Digital Water Technologies Makes Water Resilience Possible
Jan 25, 2024
Digital water technologies have the potential to create resilient water utilities capable of responding to unpredictable weather patterns, says Adam Wood, chief product officer, InfoTiles.
Droughts throughout the summer of 2022, and the devastating floods in some regions of Europe only a year earlier, have demonstrated the need for digital water technologies that can help utilities and municipalities become more resilient. Water-use evaluation and reduction, flood management and response, catchment health, and asset management are all operations where digital data collection and analysis can help deliver much more robust systems for water, people, and the environment.
InfoTiles has been collaborating with municipalities in Norway to create synergies across all these critical areas, which can be managed from a single, centralised platform, accessed remotely.
Domestic water use
More extreme weather and an anticipated increased frequency of drought across Europe means water supply is becoming more unpredictable. To ensure security of supply, the municipality of Molde in Norway has started a project using smart water meters, along with sensors in the connecting pipe network, to evaluate domestic and municipal water consumption.
The goal is to transmit this data to InfoTiles’ central data platform to map domestic and municipal water usage at a granular level – for both consumers and water managers – for the first time. As well as helping consumers better understand and reduce their domestic water use behaviours, this technology rollout will also help water managers detect any unusually high consumption and identify leaks, either at a property or in the connecting pipework.
This will help the municipally better maintain the drinking water network and carry out repairs more efficiently. Two Internet of Things (IoT) technologies are being used to transfer data from the meters and sensors into InfoTiles’ central data platform, where it can be analysed and interrogated by water managers.
They are a long-range wide area network (LoRaWAN) transmission, a wireless telecommunications network which transmits data over long distances, and a narrowband IoT (NB-IOT), which transfers data over mobile networks.
River health and flood response
The technology can also be used to assess river health and abstractions. Sensors are placed at strategically significant points to collect water quality data, including water level, nutrient content, and soil humidity. Combined with publicly available weather data from national meteorological agencies, such as rainfall and temperature, new insights can be harnessed for water managers.
This approach has the potential to go much further, capturing not only data from a single river location, but across a whole catchment. Capture and analysis of such data will prove invaluable in reducing, and even preventing, major damage and supply interruptions caused by unpredictable flood events. Machine-learning is also being used to combine the whole catchment data with meteorological data. This type of artificial intelligence allows software applications to become more accurate at predicting outcomes over time, without being explicitly programmed to do so.
The machine-learning algorithms use historical and anonymised data, including datasets from other rivers where flood mitigation already exists, as the starting point to predict future outcomes. Any data collected from new sensor points feeds into the software, building an increasingly accurate representation of the catchment so users are acting on facts, not assumptions. Machine learning is perpetually processing data, creating a fine-tuned model that can act on a granular or scalable level.
This system is being applied in the city of Lillestrøm, Norway, on the River Leira, which poses a high risk of flooding and requires a swift response to avoid major structural damage and breakdown of public amenities. With data gathered through InfoTiles’ platform contributing towards the development of early-warning systems, the municipality can mobilise first responders more effectively and plan closures of integral bridges and release warming announcements in a timely way.
By forecasting river behaviour and tracking levels to within a 50mm accuracy, authorities can gauge flood risk and see how it evolves in real-time. They can also predict more accurately when it might occur 6 –12 hours ahead of time, and what type of response is required.
According to the Organisation for Economic Cooperation & Development, floods cause more than US$40 billion of damage globally each year so it is understandable that water utilities and municipalities are acting with a sense of urgency to improve processes and operations, making them fit for an unpredictable future.
Asset management
The same platform can also capture data that shows the likelihood of critical failures in water and wastewater infrastructure and resources, including treatment failures, sewage overflows, equipment breakdowns, and infrastructure damage.
By capturing data that is continually assessing the health and effectiveness of assets, water managers can anticipate, detect, and resolve potential problems before they happen, and maintenance teams and investment can be deployed much more efficiently. What is more, it is possible to carry out these actions remotely though handheld devices such as tablets or mobile phones, which most people are now very familiar with. Water managers and other users can physically see what the data is telling them, wherever they are.
These examples show that the real strength in leveraging digital water technologies lies in the usability of a central data platform and its capacity to model, visualise, and present data across all assets and operations, accessible to all relevant personnel.
Pace of change
In water and wastewater, digital technologies are being deployed to harness data and transform processes at an unprecedented pace. Digital transformation of the water industry is described by the International Water Association as “a transformation to optimise its processes and operational efficiency.” The association says, “The development of new systems is against the background of cyber-physical systems, digitalisation and big data where software, sensors, processors, communication and control technologies are increasingly integrated, to enable informed decisions in an increasingly changing, complex, and uncertain world.“
Investment in digital water technologies is on a steep upward trajectory. Between 2018 and 2030, US$405 billion will be spent on new water infrastructure, according to Global Water Intelligence, and US$178 billion on rehabilitation. Due to the potential of digital water technologies to unlock new levels of resource efficiency in new infrastructure and rehabilitation, the market is expected to reach US$63 billion by 2025. In the near future, it will become the norm for all water utilities around the world to have digitally transformed to some extent.
The good news is that the digital water technologies needed to tackle the challenges of today are already here and forward-thinking water utilities are embracing these innovations as the means to create a sustainable water future for their populations.
More News and Articles
Aug 28, 2024
News
ITpipes Secures $20M to Transform Water Infrastructure Management
ITpipes announced it has secured $20 million in equity financing from Trilogy Search Partners and Miramar Equity Partners.
Known for its trusted and user-friendly platform, ITpipes …
Aug 26, 2024
News
Professor Dr.-Ing. Dietrich Stein
With deep sadness we announce the loss of our founder and partner Prof Dr Dietrich Stein at the age of 85.
Engineers around the globe are thankful for his dedication to the inventions in the fields of sewers, …
Aug 26, 2024
News
PPI Releases New Installation Guide for PE4710 Pipe
PPI’s MAB-11-2024 Covers HDPE Water Pipelines Up to 60-in. Diameter and 10,000-ft Long Pulls
Developed by the Municipal Advisory Board (MAB) – and published with the help of the members of the …
Aug 23, 2024
News
Faster wide-scale leak detection now within reach
Mass deployment of connected leak loggers is being made possible by the latest technology, writes Tony Gwynne, global leakage solutions director, Ovarro
Water companies in England and Wales are …
Aug 21, 2024
News
Kraken awakens customer service potential in water
The innovative customer service platform Kraken has made a successful transfer from energy to water. Ahead of their presentation at UKWIR’s annual conference, Portsmouth Water chief executive …
Aug 19, 2024
News
Predicting the toxicity of chemicals with AI
Researchers at Eawag and the Swiss Data Science Center have trained AI algorithms with a comprehensive ecotoxicological dataset. Now their machine learning models can predict how toxic chemicals are …
Aug 16, 2024
News
Goodbye water loss: Trenchless pipe renewal in Brazil
Pipe renewal in Brazil
How do you stop water loss through leaks in old pipe systems without major environmental impacts and restrictions? The answer: with trenchless technology, or more precisely …
Aug 14, 2024
Article
Impact of high-temperature heat storage on groundwater
In a recently launched project, the aquatic research institute Eawag is investigating how the use of borehole thermal energy storage (BTES) affects the surrounding soil, the groundwater …
Aug 12, 2024
News
Watercare completes East Coast Bays sewer link
Watercare has successfully finished the final connection on the East Coast Bays link sewer at Windsor Park in New Zealand.
Much of the East Coast Bays sewer link was installed using horizontal directional …
Aug 09, 2024
Article
Innovative water solutions for sustainable cities
Cities need to become more sustainable and use their water resources more efficiently. Managing water in local small-scale cycles is one possible solution. A new white paper by Eawag, the University …
Aug 07, 2024
Article
How digital technologies contribute to universal drinking water
Digital water technologies have an important role in ensuring universal access to safe drinking water by 2030, that is according to a new report from the World Health Organisation. …
Aug 05, 2024
News
Knowledge transfer on sustainable water infrastructure in India
India’s fast-growing cities need an efficient infrastructure for water supply and wastewater disposal. A research cooperation, is therefore supporting the development of a sustainable …
Contact
InfoTiles
Sverdrups Gate 27,
4007 Stavanger
Norway
Phone:
+47 906 19 364