The Aqueduct of Constantinople: Managing the Longest Water Channel of the Ancient World
Apr 05, 2022
Double water channels may have been used to maintain the system while enabling constant operation
Aqueducts are very impressive examples of the art of construction in the Roman Empire. Even today, they still provide us with new insights into aesthetic, practical, and technical aspects of construction and use. Scientists at Johannes Gutenberg University Mainz (JGU) investigated the longest aqueduct of the time, the 426-kilometer-long Aqueduct of Valens supplying Constantinople, and revealed new insights into how this structure was maintained back in time. It appears that the channels had been cleaned of carbonate deposits just a few decades before the site was abandoned.
The late Roman aqueduct provided water for the population of Constantinople
The Roman Empire was ahead of its time in many ways, with a strong commitment to build infrastructure for its citizens which we still find fascinating today. This includes architecturally inspiring temples, theaters, and amphitheaters, but also a dense road network and impressive harbors and mines. "However, the most ground-breaking technical achievement of the Roman Empire lies in its water management, particularly its long-distance aqueducts that delivered water to cities, baths, and mines," said Dr. Gül Sürmelihindi from the Geoarchaeology group at Mainz University.
Aqueducts were not a Roman invention, but in Roman hands these long-distance aqueducts developed further and extensively diffused throughout one of the largest empires in history.
Almost every city in the Roman Empire had an ample supply of fresh running water, in some cases actually with a larger volume than is the case today. "These aqueducts are mostly known for their impressive bridges, such as the Pont du Gard in southern France, which are still standing today after two millennia. But they are most impressive because of the way problems in their construction were solved, which would be daunting even for modern engineers," said JGU Professor Cees Passchier.
More than 2,000 long-distance Roman aqueducts are known to date, and many more are awaiting discovery. The study undertaken by Dr. Gül Sürmelihindi and her research team focuses on the most spectacular late-Roman aqueduct, the water supply lines of Constantinople, now Istanbul in present-day Turkey.
Carbonate deposits provide insights into Byzantine water management
In AD 324, the Roman Emperor Constantine the Great made Constantinople the new capital of the Roman Empire. Although the city lies at the geopolitically important crossroads of land routes and seaways, fresh water supply was a problem. A new aqueduct was therefore built to supply Constantinople from springs 60 kilometers to the west.
As the city grew, this system was expanded in the 5th century to springs that lie even 120 kilometers from the city in a straight line. This gave the aqueduct a total length of at least 426 kilometers, making it the longest of the ancient world. The aqueduct consisted of vaulted masonry channels large enough to walk through, built of stone and concrete, 90 large bridges, and many tunnels up to 5 kilometers long.
Sürmelihindi and her team studied carbonate deposits from this aqueduct, i.e., the limescale that formed in the running water, which can be used to obtain important information about water management and the palaeoenvironment at that time. The researchers found that the entire aqueduct system only contained thin carbonate deposits, representing about 27 years of use.
From the annals of the city, however, it is known that the aqueduct system worked for more than 700 years, until at least the 12th century. "This means the entire aqueduct must have been maintained and cleaned of deposits during the Byzantine Empire, even shortly before it ceased working," explained Sürmelihindi. Carbonate deposits can block the entire water supply and have to be removed from time to time.
Double construction over 50 kilometers was likely built for maintenance
Although the aqueduct is late Roman in origin, the carbonate found in the channel is from the Byzantine Middle Ages. This made the researchers think about possible cleaning and maintenance strategies – because cleaning and repairing a channel of 426 kilometers implies that it cannot be used for weeks or months, while the city population depends on its water supply.
They then found that 50 kilometers of the central part of the water system is constructed double, with one aqueduct channel above the other, crossing on two-story bridges. "It is very likely that this system was set up to allow for cleaning and maintenance operations," said Passchier. "It would have been a costly but practical solution."
Unfortunately for the research team, it is no longer possible to study the exact operation of the system. One of the most imposing bridges, that of Ballıgerme, was blown up with dynamite in 2020 by treasure hunters who erroneously believed they could find gold.
Related links:
Tectonics and Structural Geology group at the JGU Institute of Geosciences
Geoarchaeology group at the JGU Institute of Geosciences
JGU Institute of Geosciences
Read more:
"The hydraulics of the world's first industrial plant: a unique construction in the Barbegal water mills" (13 Nov. 2020)
More News and Articles
Aug 28, 2024
News
ITpipes Secures $20M to Transform Water Infrastructure Management
ITpipes announced it has secured $20 million in equity financing from Trilogy Search Partners and Miramar Equity Partners.
Known for its trusted and user-friendly platform, ITpipes …
Aug 26, 2024
News
Professor Dr.-Ing. Dietrich Stein
With deep sadness we announce the loss of our founder and partner Prof Dr Dietrich Stein at the age of 85.
Engineers around the globe are thankful for his dedication to the inventions in the fields of sewers, …
Aug 26, 2024
News
PPI Releases New Installation Guide for PE4710 Pipe
PPI’s MAB-11-2024 Covers HDPE Water Pipelines Up to 60-in. Diameter and 10,000-ft Long Pulls
Developed by the Municipal Advisory Board (MAB) – and published with the help of the members of the …
Aug 23, 2024
News
Faster wide-scale leak detection now within reach
Mass deployment of connected leak loggers is being made possible by the latest technology, writes Tony Gwynne, global leakage solutions director, Ovarro
Water companies in England and Wales are …
Aug 21, 2024
News
Kraken awakens customer service potential in water
The innovative customer service platform Kraken has made a successful transfer from energy to water. Ahead of their presentation at UKWIR’s annual conference, Portsmouth Water chief executive …
Aug 19, 2024
News
Predicting the toxicity of chemicals with AI
Researchers at Eawag and the Swiss Data Science Center have trained AI algorithms with a comprehensive ecotoxicological dataset. Now their machine learning models can predict how toxic chemicals are …
Aug 16, 2024
News
Goodbye water loss: Trenchless pipe renewal in Brazil
Pipe renewal in Brazil
How do you stop water loss through leaks in old pipe systems without major environmental impacts and restrictions? The answer: with trenchless technology, or more precisely …
Aug 14, 2024
Article
Impact of high-temperature heat storage on groundwater
In a recently launched project, the aquatic research institute Eawag is investigating how the use of borehole thermal energy storage (BTES) affects the surrounding soil, the groundwater …
Aug 12, 2024
News
Watercare completes East Coast Bays sewer link
Watercare has successfully finished the final connection on the East Coast Bays link sewer at Windsor Park in New Zealand.
Much of the East Coast Bays sewer link was installed using horizontal directional …
Aug 09, 2024
Article
Innovative water solutions for sustainable cities
Cities need to become more sustainable and use their water resources more efficiently. Managing water in local small-scale cycles is one possible solution. A new white paper by Eawag, the University …
Aug 07, 2024
Article
How digital technologies contribute to universal drinking water
Digital water technologies have an important role in ensuring universal access to safe drinking water by 2030, that is according to a new report from the World Health Organisation. …
Aug 05, 2024
News
Knowledge transfer on sustainable water infrastructure in India
India’s fast-growing cities need an efficient infrastructure for water supply and wastewater disposal. A research cooperation, is therefore supporting the development of a sustainable …
Contact
Johannes Gutenberg University Mainz - Institute of Geosciences
Dr. Gül Sürmelihindi
55099 Mainz
Germany
Phone:
+49 6131 39 32845